
A STUDY OF TEMPERATURE WAVES BASED ON THE GENERALIZED 

HEAT-TRANSFER EQUATION 
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A hyperbolic-type thermal conductivity equation is considered for a medium with 
variable thermophysical parameters. New classes of temperature fields are ob- 
tained, which permit an accurate analytical description. 

]. One-Dimensional Temperature Waves. In a plane one-dimensional,region the tempera- 
ture field is defined by the generalized heat-transfer equation [I-3] 

cTt + c?Tu : (LTx)~ -}- q (T,  x, t). ( 1 ) 

Here and below the use of independent variables as subscripts will denote partial differen- 
tiation. 

We will consider the temperature interval T ~ IT], T2], in which the following formulas 
will describe the thermophysical properties of the medium: 

c = Co + c i T ,  Co, cl - -  const; L = Xo + ~IT, %0, % t -  const; (2 )  

c? : • + • • = • (/), z i  : •  (3 )  

In particular, we are interested in the case where the heat-transfer relaxation time 
y = y(t), so that 

xo : Co?(t), • : cl?(t) .  (4 )  

L e t  t h e r e  e x i s t  an  i m m o b i l e  m e d i u m ,  h e a t  t r a n s f e r  i n  w h i c h  o b e y s  E q s .  ( 1 ) - ( 3 ) .  The 
temperature of the medium is constant and equal to To. We take the energy liberation law in 
the form 

q = q o ( t ) ( T - - T o )  n, n ~  1. (5 )  

Problem 1: at the initial moment in time 

T (x,  t)lx=O , t=o  : To ~ -  cons t ,  

and  a t  t > 0 t h e  t e m p e r a t u r e  on  t h e  b o u n d a r y  x = 0 c h a n g e s  b y  a l a w  T b ( t )  , T b ( 0 )  = To ,  w h i c h  
is defined with a certain arbitrariness in the course of constructing the solution. In the 
medium there propagates a temperature wave x = xf(t). It is required to find the temperature 
regime at x ~ [0, xf]. 

Another variant is possible, viz., Problem 2: the left boundary of the medium is con- 
sidered mobile, x = Xb(t), and on this boundary the temperature derivative 

is specified. 

~ O_T_T~ = rb(t) (6 )  

\ o x /  X=Xb(t} 

The algorithm to be used for solving the problems 
a special functional series [4]. 

We apply a Legendre transform to Eq. (I) and transform from the plane 
plane of the new independent variables (r, t): 

0 (r, t) = xTx - -  T + Mt ,  M - -  e o n s t ,  

r = Tx,  x = Or, D (x, t_____~) = Orr :/= 0.  
D(r ,  t) 

is based on the method of constructing 

(x, t) to the 

(7) 
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This gives the following nonlinear equation: 

(co + c~T) 0~ (M - -  ~ )  + (• + • ( ~  - -  ~).~.)  = ~.o + ~.~T + O= [~.~r~ + q~ (T - -  To)'zl, (~ )  

T (r, l) = Mt  + r o t - - ( ~ .  

Equation (8) has the characteristic r = O, so that it is convenient to take the solution in 

the form of the functional series 

e(r ,  t ) =  ~ a ( h ) ( t ) r  ~. (9 )  
h = 0  

In the region ahead of the temperature wave front, which is a line of weak discontinuity [5], 
r = O, and for the first two terms of expansion (9) we obtain 

ar o) (t) = Mt - -  To, T~ (t) = T (r, t)I~=o ~ To, ~ (t) = (@r)~=0, X~ = a(~) (t). ( l 0 )  

The calculations related to substitution of aeries (9) in Eq, (8) give us the equation (n = 
i) 

h 

[M (~o + ~r + 2)(~ + ~) a (~+~) - ]~ ((~o + ~,~r + 2)(~ + 
h=O i = 0  

-t- 1) aU+2)a~h-~ - -  c~M (i + 2)(i -+- l ) a r  (no -+- • + 1) a~ i+~) (k - -  i -}- 1) a~ h - i + ~ ) -  

( 11 )  

k ] 

--(i + 2)(i-l- I)aU+2)a~tk-O)} + Z { c~a(u-i) Z (i + 2)(i + I) a(~+2)a~ i=~)- • -[- i) a} h-]+~) X 
f=0 i=0 

f f 
.(h--i) " ~  • ~ ([ - -  i 4- l) a(Oa~ f - i+ l )  + • ,g~ (] - -  i + 2) • 

i=O i=O  

h 

• (j- e+ + 2 IX + , ) •  
h=O i=O 

h 

• (k - -  i + ~) a('+~)a(~-~+~) + ]~ {~, (k - i +  i )a? -;+~) • 
i = 0  

i / 
X X (i + 1) a (~+~) (] - -  i + 1)a} ~'-~+') --• -i) ~ (i -? 1)a  (i+I) X 

i=O i ~ 0  

Comparing the terms with identical 
efficients of the aeries: 

• (j -- i + 2 ) ( / - -  i + 1) a(':+~)a(i-~+2) -- c~ (It -- i + l) a (h-i+~) x 

X Z (i + 2)( i  + , , ,~ ,,,t j j  ;%+~,Mt  Z [qo(Mt - -To) (k+  2 ) ( k +  1) a(k+a)- -  
i ~ 0  k=O 

k 

- q o ] ~  (i + 2)(i + 1) a " + %  (~-~) - ~,a(~)] ~ + 
i = 0  

h 

h = 0  i = 0  

+ ~ 2 (k + 2)(k + 1) a(k+2)r h+2. 

powers of the quantity r, we write equations for the co- 

a~ i) = wo (t), wo (t) = w (To, t), w ~ = - - - -  , ( 1 2 )  
c~ 

2• ~) - -  Boa (2) =- 0, ( i 3)  

(3) 6•176 - -  6Boa (3) - -  2a (2)a~2)c (To) + 4~ ~ (a~2)) 2 - -  2•176 ) + k~a(2)wio - -  32/~a (2) - -  2qo (a(2)) ~ = O, ( i 4 )  

2•176 (k + 2) at - -  [(k + 2) 2 - -  (k + 2)1 Boa (k+2) -- 

= F(h+~) (t), k >~ 0; • = cV, ~o = • (t), Bo = e (To) Wo (t) + ~ (t):wo,. (15) 
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Here the functions F(k+2) (t) contain coefficients of. series (9) only with numbers smaller 
than (k + 2 ) ,  i . e . ,  Eq. (15) i s  a l i n e a r  f i r s t - o r d e r  e q u a t i o n .  P e r f o r m i n g  the  i n t e g r a t i o n ,  
we find 

t t t 

0 0 0 

[(t) = - -  Bo(k -6 1) F ,~+2) (t) 
2• ~ , g(t) = 2•176 + 2) n~215176 t). 

Thus, the coefficients of series (9) are defined in quadratures and each coefficient a(k+2) (t) 
contains one arbitrary constant c(k+2). The temperature field is characterized by the for- 
mulas 

2 x(r, t) ~ (k + 1)a<U+i)(t)r k, T(r,  t ) :  To + x r - -  a(~)(t)r ~. 
k=O k = l  

The operations performed with the series are valid, since the convergence of 
of the form of Eq. (9), which appear in the method of [4], was proved in [6]. 

From Eqs. (I0), (12), we obtain the coordinate of the wave front 

t 

xf (t) = ~ Wo (z) dz, Wo = w (To, t). 
o 

series 

(17) 

The coordinate of the boundary x = 0 is defined in the new variables by the function r = rb(t ) 
from the equation 

x [rb (t),  t] = 0 ,  

while the boundary temperature Tb(t) = T(rb, t) is concretized by choice of the arbitrary 
constants C (k+2), k = 0, I, 2, ..., ~. 

If the left-hand boundary is mobile (Problem 2), we proceed as follows: we specify the 
temperature derivative with respect to the spatial coordinate r = rb(t) , while the law for 
boundary motion xb = x(rb, t) can be varied by using the arbitrary constants c(k+2), k ~0. 

We note that the dependence of the thermophysical parameters on temperature and the 
effect of heat absorption (liberation) is perceptible for the given class of solutions only 
beginning with third-order terms in series.(9). If n > I in Eq. (5), then energy liberation 
affects only terms of even higher order. 

It is known that in nonlinear media, localization of the region of temperature front 
propagation can occur. This is caused either by the character of the function % = %(T -- To) 
and the temperature regime at the boundary or by some special law of volume heat absorption. 
A detailed exposition of this question, together with a bibliography, may be found in [7]. 

Equation (17) shows that for the given type of temperature fields spatial localization 
of temperature perturbations 

x j ( t ) ~  x ,  < oo, tE[O, oo), T(x,  t)~=To, [x l />x,  

can occur only because of the properties of the medium, which define the function Wo = 

Wo(t) < ~. 

2. New Exact Solution of the Nonlinear Wave Heat-Transfer Equation~ For the case of a 
high-intensity nonstationary heat-transfer process it is possible [&] that the term cTt may 
be very small in comparison to cyTtt, and can thus be omitted. 

We will accept this assumption, and further assume in Eq. (]) that % E const, q = 0, and 
then write the nonlinear wave heat-transfer equation [8, 9] 

T~t=w~Txx, w 2 -  , w = w ( T ,  Tx, Tt, x, t). (18) 
cy 

For  t he  v e l o c i t y  o f  h e a t  p r o p a g a t i o n ,  we assume a f u n c t i o n  w =W(Tx,  t ) .  

Legendre transformation reduces Eq. (18) to a nonlinear Ampere-type equation 
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@rrOu - -  @r~ -= - -  wz(r, t), (I9) 

x=O~, r=T~, T=xr--@(r, t) (20) 

An equation of the form of Eq. (19) is employed in nonstationary gasdynamics in the study of 
processes which are adiabatic but not isentropic (see [10] and the bibliography therein). 
We will make use of the availabl~ results of mathematical study of equations of the form of 
Eq. (9) .  

In [11] the intermediate integral method was used to prove that if 

r j-a 
w 2 - -  fz(~ , ~ - -  , ( 2 1 )  

(t + b) ~ t + b 
the solution has a form 

O(r, t ) =  +_;[(~)d~+(t+ b)~(~)+A, A------const, (22) 

while f(a), ~(u)  are arbitrary functions. The signs • refer to two different families of 
characteristics of Eq. (]9). By choice of the function f(~) we have the possibility of vary- 
ing the dependence of heat propagation velocity upon time and the derivative T x in Eq. (21). 
The presence of the arbitrary function ~(~) permits examination of some boundary problems. 

According to Eqs. (20), (22) we have 

x(r, t ) =  -4- [(~) -+-~'(~), (23) 
t+b  .... 

[ ) ~S[(o~)do~--(t+b)(p--A. (24) r ( r ,  t ) = r  q ~ ' _ t - - - ~  

Example. Let f(~) = fo~ n, fo - const, n+ 1 # 0, while the temperature wave propagates in a 
medium with constant temperature To - const. Then from the condition T(r, t)ir=o = To we 
find the function qo(a): 

q o ( c ~ ) = - - c ~  /~ , A : a - - T o .  (25) 
a(n + 1) 

The temperature field is represented in parametric form x = x(r, t), T = T(r, t) with Eqs. 
(23)-(25). 

The coordinate of the wave front is as follows: 

(_2_b F x y ( / ) = - - l +  t + b J  , n+ l= /=O,  b > O ,  

xj (t)--+--1, t--+ oo, n +  1 > 0 ;  xE(--1, 0], 

x~(t)-+oo, t~o~, n + l < O ;  xE[O, o~). 

We see that in this example localization of temperature perturbations is produced by the 
choice of n, i.e., by the properties of the medium, Eq. (2]). 

Taking n = 0 for simplicity, we find that the value Xb(t ) ~ 0 in Problem | corresponds 
~to 

a 

r~ (t) + a = • ~ o  (t .+ b m- fo), 

so t h a t  Tb(t)  = T(rb ,  t )  by Eq. (24) .  

It is simple to see that for Problem 2 one of the functions xb(t), rb(t) can be con- 
sidered as specified beforehand; the remaining formulas remain unchanged. 

It should be noted that the class of functions (21), characterizing the dependence w(r, 
t) (or y(r, t))) and permitting solution of Eq. (19) with arbitrariness of one argument in 
one function, may be expanded. In fact, if, following [12], we take 

2 N + 4  h--4 

w~ (r, t) - f~ (~) Z , N ~ 0, (t -~- b) ~ Ag_ Lk-4  (o~) z 2 
k = 4  
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r + a  
o ~ - - i ~ b ,  z = ( r - ~ - a ) ( t + b ) ,  (26) 

then the solution of Eqs. (19), (26) has the form 

O(r, t ) = O 0 ( r ,  t ) +  %h_2(a)z -2" , (27) 
k = 4  

w h i l e  Oo(r ,  t )  i s  c a l c u l a t e d  from Eq. (22 ) ,  and t h e  f u n c t i o n s  a r e  a r b i t r a r y .  

The coefficients Xk-2(a) in Eq. (27) are found from the solution of the following first- 
order linear equations: 

6~'2fo~ z + 12%2~(f + ~]") q- Lo ---- O, 
3 

8x~foc z -~ 20 %3a(f q- ~f ')  + 12 %~q)"o( F + L 1 = O, 
Y 

3 

loz~f~ 2 + 30 ~ ( f  + ~I') + 20~7,~"~3 + Lt = O, 
1 

(m + 3) o~ [(m + 4) Xm+~ (af '  + f) + 2~,~+2~f + (m + 2) X~+l~z-7 q)"] + L m + 
2- 

+ + + + 
i = 4  k 

+ i ( i - -  1) ( i - m -  4) ] 4 %~-2~rn+2_~ -~ ( i 2 -  mi  - -  2 i -  1)~2X/_27~+2_i ---- O, 

where m~0; in this recursive formula the last sum is not equal to zero at m~4. Integra- 
tion of these equations presents no difficulties, and each coefficient Xk-2(a) is defined 
with arbitrariness in one integration constant Ck_2 , k ~ 4. 

Consequently, the expression for the temperature T(r, t) will contain an arbitrary func- 
tion ~(a) and arbitrary constants Ck-a, k = 4, 5, ..., co, while function w(r, t) is deter- 
mined by the choice of 2N + 2 arbitrary functions with argument a; N ~0 is an integer. 

The local convergence of the series appearing in solution (27) may be proved by the 
method of Weierstrass--Kovalevskayamajority functions [13]. We then find that if X=(a) is 
an analytical function and the boundary of the region under study and the conditions thereon 
are also analytical, then 

0t (~, z) = ~ X~_~ (~) z ~  
k = 4  

i s  a n a l y t i c  w i t h  r e s p e c t  to  the  a rgument  z in  some v i c i n i t y  o f  the  chosen  v a l u e  z = z ~  The 
t e c h n i q u e  of  t h e  p r o o f  i s  a n a l o g o u s  to  [14] .  

In  c o n c l u s i o n ,  we f o r m u l a t e  the  f o l l o w i n g  a n a l o g y .  In  o n e - d i m e n s i o n a l  n o n s t a t i o n a r y  
g a s d y n a m i c s ,  f o r  a d i a b a t i c  p r o c e s s e s  s imp le  Riemann waves a r e  known, and t h e i r  g e n e r a l i z a t i o n  
is nonisentropic simple waves [I0]. Correspondingly, in the heat-transfer theory simple 
waves occur at w = w(Tx) [9], while their generalization to the case w = w(Tx, t) is repre- 
sented by Eqs. (21), (22). The generalization of both simple gasdynamic waves and simple 
thermal waves is then based on the intermediate integral method for the Monzh--Ampere equa- 
tion (19). 

NOTATION 

T, temperature; x, Cartesian coordinate; t, time; c, specific heat; %, thermal conduc- 
tivity of the medium; y, heat-transfer relaxation period; w, heat propagation velocity; q, 
volume energy source; O, auxiliary function; r = 3T/3x. Subscripts: f, value on wave 
front; b, on boundary; superscript in curved brackets, number of series term; independent 
variable used as subscript denotes partial differentiation; prime above a function sign, 
differentiation of a single-argument function. 
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INVERSE BOUNDARY-VALUE PROBLEM OF HEAT CONDUCTION FOR A 

TWO-DIMENSIONAL DOMAIN 

N. M. Lazuchenkov and A. A. Shmukin UDC 536.24 

An approximate solution of a two-dimensional inverse problem is constructed on 
the basis of a solution of the Cauchy problem obtained in the form of a series 
in the derivatives and the Tikhonov regularization method. 

The thermal state of power equipment is determined to a considerable extent by the 
heat-transfer characteristics on the surface of the structure elements. These conditions 
can often be found only from the solution of the inverse boundary-value problems of heat con- 
duction. Such one-dimensional problems have been studied sufficiently completely []]. How- 
ever, the one-dimensional model cannot yield confident results for nonuniform heat delivery 
and thickness of the structure element. 

Let us examine the problem of determining the temperature and heat fluxes from a heat- 
delivering boundary y = W(x), (0 < W(x) < d) of the two-dimensional domain D = {(x, y):x fi [0, 
d], y lE[0, W(x)]} by means of known temperature measures and the law of heat transfer to the 
opposite side, which is given by the line y = 0. We consider the thermophysical parameters 
constant. 

Let the curve y = W(x) have a continuous external normal n(x) and at points defined by 
the mesh ~x = {Xo < x~ < ... < x k} on the boundary y = 0 let the temperature t(x~ y, T) be 
known at the times ~T = {To < T] < ... < Tp), i.e., 

t (x~, O, ~j)  = [u -  ( ] ) 
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